
International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Designing Of Cache Partitioning Algorithm For

Multicore Based Real Time System

S. Lokhnade, Dr. D.V. Padole

Abstract— Cache partitioning and sharing is important to the successful use of multicore processors. However, maximum studies have

quite a few limitations, such as too much simulation time due to inter thread memory interfering, simulation in accurateness.This paper

proposes a cache partitioning method for multicore based real time systems. It reduces cache interfering among concurrently executing

threads. The cache partitioning algorithm estimates the miss-rate characteristics of each thread at run-time and dynamically partitions

the cache among the threads that are executing concurrently and hence improve the performance.

Index Terms— cache, performance, benchmark, multiprocessor, fairness, interference, throughput.

—————————— ——————————

1. INTRODUCTION

Many architectures today, have multiple cache partitions, each

with potentially different performance characteristics. To meet

the strict time to market requirements of systems, compilers
require partitioning algorithms for effectively assigning values
to the cache partitions. Furthermore, designers need a
methodology for improving the performance of a cache
hierarchy on an application without relying on time consuming
simulation.

Several algorithms are studied and their advantages and
drawbacks are used as a guide for the development of cache
partitioning algorithm for multicore based real time system that
achieves better performance than LRU and shows increasing
promise over alternative algorithms as the number of
processors increases.

This paper presents algorithms and techniques to effectively
meet these needs. First, static cache partitioning algorithm is
presented. This is the algorithm for effective partition assign-
ment of cache. It supports a wide variety of memory models
including multiple layers of caches partitions. A few ranges of
benchmarks are used to demonstrate the effectiveness of the
static cache partitioning algorithm. Experiments show optimal
or near-optimal results on instruction miss rate and data miss
rate on different benchmark application.

This also presents dynamic cache partitioning algorithm for
multicore based real time system. This is an algorithm to
estimate the effectiveness of the cache partitioning for a given
application without requiring time consuming simulations. To
show that dynamic cache partitioning generates accurate
performance estimates, performance estimates are compared
to previous algorithms simulation results. Experiments show
performance of this algorithm is better as compared to
previous algorithm.

 S. lokhande is currently pursuing masters degree program in embedded engi-

neering in Nagpur University, INDIA, E-mail: sangeeta173@gmail.com

Lastly, static cache partitioning algorithm and dynamic cache
partitioning algorithm for multicore based real time system are
evaluated using a comprehensive SuperEScaler simulator and
a wide variety of benchmark application.. This evaluation
demonstrates the value and effectiveness of both algorithms in
selecting suitable cache hierarchy for embedded systems.
This evaluation also demonstrates the need for suitable
benchmarks when evaluating partitioning algorithms.

This cache partitioning algorithm for multicore based real time
system reduces cache interference among simultaneously
executing benchmark application. The cache partitioning algo-
rithm estimates the miss-rate characteristics of each
benchmark application at run-time and dynamically partitions
the cache among the application that is executing
simultaneously and improves overall performance.

2. PREVIOUS WORKS

There are numerous projects that are associated with this

project. To make things easier, this section will focus on few

projects that are heavily associated with this project.

Fair Cache Sharing and Partitioning in a Chip Multiproc-

essor Architecture [1]

 This summarizes a detailed study of fairness in cache sharing

between threads in a chip multiprocessor (CMP) architecture.
This paper makes several contributions. First, it proposes and

evaluates cache fairness metrics that measure the degree of

fairness in cache sharing, and shows that two of them corre-

late very strongly with the execution time fairness. Secondly,

using the metrics, the paper proposes static and dynamic L2

cache partitioning algorithms that optimize fairness. Finally

studies the relationship between fairness and throughput in

detail. The optimizing fairness usually increases throughput,

while maximizing throughput does not necessarily improve

fairness.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Dynamic Cache Partitioning for Simultaneous Multithread-

ing Systems [2]

This paper presents a general partitioning scheme that can be
applied to set-associative caches at any partition granularity.
Further-more, in this scheme threads can have overlapping
partitions, which provides more degrees of freedom when par-
titioning caches with low associativity. Trace-driven simulation
results show a relative improvement in the L2 hit-rate of up to
40.5% over those generated by the standard least recently
used replacement policy, and IPC improvements of up to 17%.

Fig1. IPC of art and mcf under 32-KB 8way L1 caches-IPC as

a function of cache size

When executing the threads simultaneously the IPC values
are approximated from Figure 2 and the hit-rates are esti-
mated from the trace-driven simulations

A Data Centered Approach for Cache Partitioning in Embed-
ded Real-Time Database System [3] allows different tasks to
have a shared locking partition in cache. The hard real-time
tasks will have their own partitions and thus they can perform
high predictability. At the same time, a shared non-locking par-
tition is reserved for the soft real-time tasks. In this way per-
formance improvements based on the data that are frequently
used by many tasks in the system.

The simulation results shown in Figure 2 demonstrate that the
data centered cache partitioning scheme can further decrease
the average miss rate significantly; for a 16KB data cache, the
data centered cache partitioning scheme reduces the miss
rate to 76% of that of the LRU policy and it is also superior to
the static partitioning scheme as the miss rate is reduced by
further 10%.

Fig2. Miss rate comparison under different cache size with 32-
way associativity

3. PARTITIONING MECHANISMS

.

Fig 3.Set associative partitioned cache

The cache partitioning implementation is done in two steps.
The first is develop the algorithm for static cache partitioning
algorithm and second modify same algorithm for dynamic
cache partitioning.

3.1 STATIC CACHE PARRIRIONING

 The logic used for Static cache partitioning algorithm can be
explained through Fig 3. Set associative partitioned cache. In
this cache is divided in N number of Sets. Each Sets are the
partitioned in different ways using N-way set associative
mapping .For example some of the cache_line are given to
instruction within each set and rest of the cache_lines are
given to the data. Using this partitioning, each set in the cache
is distributed the same, as determined by a partition register.
The partition register is a pointer to the first data way within
each set. In addition, minimum and maximum distributions are
defined so that, for example, Fig. 3 illustrates a partitioned
cache in a particular state such that some of the cache is giv-

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

en to instruction and remaining is given to data. The following
algorithm is used for this mechanism.

ALGORITHM:

 Initialize cache(cache structure)

 Initialize the system with access-no instruction and

data miss

 Access cache through access_type and address

 Process miss

 Determine miss rates

 Check for adjustment in favor of instruction cache

 If il1 and dl1 difference > miss rate threshold

 Invalidate cache line

 Set.line.valid=invalid

 Set.line.lastused= Repeat above step for Data cache

 Go for next iteration.

3.2 DYNAMIC CACHE PARTITIONING

When a cache miss occurs, the replacement mechanism, least
recently used policy selects the entries in the accessed line
that have been used. There is no information about entry or
the relative occupancy of the cache by each application.
Therefore, applications with a high demand, i.e. many
accesses to different entries, are allocated more cache space
than applications that have a low demand.

However, there is no guarantee that the new entries, brought
into the cache because of a miss, will be reused. So by
replacing entries owned by other processes, an application
could be acquiring space that it does not need, resulting in
suboptimal sharing of the cache. Consequently the
performance of the system degrades. A representative
example of such cases is when one of the competing
processes is a streaming application. Previous studies
presented the evidence of problems caused by LRU and this
proposed cache partitioning as a solution. This evaluates
different schemes that attempt to partition the cache
dynamically. The algorithm used for implementation of static

cache partitioning given above can be used for dynamic
cache partitioning by having certain modification like
inserting repartition event, comparing with threshold and
developing configure file.

This algorithm can be run on simulator with different
benchmark application to evaluate the performance.

4. EXPERIMENTAL SETUP

We make use of the SESC: Super E Scalar simulator with dif-
ferent benchmark application to evaluate the performance.
Numerous simulations were run on each of the proposed
cache, and the configurations that showed to be the most
promising are presented below in table 4.1.

Parameter Value

Cache size 16 KB

Associativity 8-way

Repartitioning period 100,000 cache accesses

Repartitioning thre-
shold

0.02 miss rate difference

Repartitioning step
size

16 sets

Replacement strategy LRU

Table 4.1 Cache configuration

4.1 PERFORMANCE

This section presents the results of a simulation system
in order to understand the quantitative effects of our cache
partitioning scheme. The simulations concentrate on an 8-way
set-associative L1 cache with 32-Byte blocks and vary the size
of the cache over a range of 2 KB to 16 KB.

Our scheme is more likely to be useful for an L1 cache, and so
that is the focus of our simulations. We believe that this will
work on L2 caches as well.

For speed up calculation different benchmarks application are
simulated, Lu, gcc, fft, art, mcf etc. from SPEC CPU2000. IPC
for L1 cache managed by the LRU policy and one with a L1
cache managed by our cache partitioning algorithm. The
absolute improvement in the fig 4 is the IPC of the partitioned
case subtracted by the IPC of the standard LRU case. The
relative improvement is the improvement relative to the IPC of
the standard LRU, and is calculated by dividing the absolute
improvement by the IPC of the standard LRU. The fig 4 shows
that the partitioning algorithm improves IPC for all cache sizes
up with previous algorithm.

International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Fig 3. Miss Rate comparison

Fig 3. Shows miss rate, instruction miss rate and data miss

rate comparison of static and dynamic cache partitioning on

different benchmark application.

Fig 4. Performance comparison

5. CONCLUSION

The work presented in this thesis, evaluated cache partitioning
as a solution to achieving optimal sharing of the cache
amongst the concurrently executing applications and improv-
ing the overall system‘s performance. Initially the effects of
Static cache partitioning on the performance of multi-
programmed workloads were studied; the miss rate compari-
son indicated that this replacement policy can result in consis-
tent improvements of instruction miss rate. In contrast to dy-
namic cache partitioning, statically partitioned caches were
found to improve the overall performance of the system. How-
ever, these are not practical as they rely on prior knowledge of
the characteristics of the applications that are executed.
Therefore several dynamic cache partitioning schemes which
attempt to adapt the cache space allocation to the dynamically
changing characteristics of the applications was analyzed.
This analysis was necessary as the identified advantages and
drawbacks were then used to guide the development of an
improved cache partitioning scheme.LRU and partitioned

cache were evaluated for a different number of cache size
sharing a 8KB, 8-way associative L1 cache. Figure 4 presents
the overall performance for each case and shows that the
gains of cache partitioning over LRU increase with the cache
size. This is also evident in Figure 4, where the overall perfor-
mance compare with the previous algorithms and dynamic
cache partitioning for multi-core based real time system.
However, the cache partition scheme is able to allocate cache
space to competing processes efficiently by monitoring each
running process and adapting dynamically to the characteris-
tics of the multi-programmed workload. Therefore, the utiliza-
tion of an appropriately partitioned cache can be seen to de-
grade more slowly than one using the pure, LRU replacement
policy. This is important as the current trend is to increase the
number of cores integrated on chip, so improving the cache
utilization is essential.

REFERENCES:

[1] K.J. Nesbit et al., ‗‗Fair Queuing Memory Systems,‘‘

Proc. 39th Ann. IEEE/ACM Int‘l Symp.

Microarchitecture, IEEE CS Press, 2006, pp. 208-

222.ddd

[2] G. E. Suh, L. Rudolph and S. Devadas, “Dynamic

Cache Partitioning for Simultaneous Multithreading

Systems‖, IEEE ISORC 2001, pages 233–240. IEEE

Computer Society.

[3] HU WEI, CHEN TIANZHOU, ―A Data Centered

Approach for Cache Partitioning in Embedded Real-

Time Database System, In HPCA-16,2010.

[4] Marco Paolieri1;3, Eduardo Qui˜nones1, Francisco J.

Cazorla. A software pipelined approach to multicore

execution of timing predictable multi-threaded Hard

real time task. In Proceedings of the 14th IEEE

ISORC 2011, pages 233–240. IEEE Computer Socie-

ty

[5] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter.

ATLAS: A scalable and high-performance scheduling

algorithm for multiple memory controllers. In HPCA-

16, 2010.

[6] Y. Kim et al., ‗‗Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior,‘‘

Proc. 43rd Ann. IEEE/ACM Int‘l Symp.

Microarchitecture, IEEE CS Press, 2010.

[7] J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S.

Metzlaff, C. Rochange, H. Casse, P. Sainrat, and T.

Ungerer. RTOS Support for Parallel Execution of Hard

Real-Time Applications on the MERASA Multi-Core

Processor. In Proceedings of the 13th IEEE ISORC

2010,

[8] O. Mutlu and T. Moscibroda, ‗‗Parallelism-Aware

Batch Scheduling: Enhancing Both Performance and

Fairness of Shared DRAM Systems,‘‘ Proc. 35th Ann.

Int‘l Symp.Computer Architecture (ISCA 08), IEEE CS

Press, 2008, pp. 63-74.

